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1 Introduction

The 3-body problem, whose goal is to study the trajectories of three bodies under
their mutual gravity, has aroused a lot of interest since Isaac Newton published the fa-
mous book The Mathematical Principles of Natural Philosophy. Up to now, no general
closed-form solution has been found for the general 3-body problem; however, it is still
useful to work on simplified problems to comprehend the dynamics of celestial bodies, one
of which is the hierarchical restricted 3-body problem. restricted means that one of the
bodies is assumed to be infinitely massless compared to the others, whereas hierarchical
means that the massless body is much closer to one body than the other, which then acts
as a perturbation.

The goal of this project is to study the evection resonance in the hierarchical restricted
3-body problem, via both analytical and numerical approaches. The evection resonance
is a second-order resonance between the mean longitude of the star λ0 and the longitude
of periapsis of the satellite ϖ, as shown in the schema 1. It occurs when these two angles
precess roughly at the same frequency, that is, when the periapsis of the particle follows
the position of the perturbator. In this problem, I am particularly interested in the motion
of the particle. To simplify the problem mathematically, small eccentricities and coplanar
orbits are assumed.

Figure 1: Schema of the hierarchical restricted 3-body problem

In the celestial mechanics context, any star-planet-satellite system, for instance the
Sun-Earth-Moon system, is a hierarchical restricted 3-body system, where the star is the
perturbator, the planet is the central body and the satellite is the particle.

In the analytical work, I’ll derive the Hamiltonian of the particle and simplify it to an
one-degree-of-freedom and one-parameter autonomous one. The evection resonance will
appear as a change of topology in the phase space as the parameter varies. The last step
is to confirm the existence of the evection resonance via numerical simulations, run with
the N-body software NcorpiON [1], and to verify that it occurs where it’s predicted to be.

Songnan QI 1/22



Evection resonance in the hierarchical restricted 3BP January 13, 2025

2 Analytical model

2.1 Hamiltonian computations

2.1.1 Three-degree-of-freedom Hamiltonian

Figure 2: The three bodies in an reference frame with the origin point O

To find the Hamiltonian of the problem, I start with the equations of motion of the
three bodies, with the subscript ”0” for the star, ”p” for the planet and no subscript for
the massless satellite. 

ü = −Gm0(u − u0)
|u − u0|3

− Gmp(u − up)
|u − up|3

ü0 = −Gmp(u0 − up)
|u0 − up|3

üp = −Gmp(up − u0)
|up − u0|3

(1)

Since only the relative positions are important, the equations of motion can be trans-
formed by defining r = u − up, r0 = u0 − up.

r̈ = −Gm0

(
r0

r3
0

+ r − r0

|r − r0|3

)
− Gmp

r

r3

r̈0 = −G(m0 + mp)r0

r3
0

(2)

The Hamiltonian of a massless particle is given by

H = v · ṙ − L (3)

such that 
ṙ = ∂H

∂v

v̇ = −∂H

∂r

(4)

where v = dr/dt, and the Lagrangian is defined as L = (Ek − Ep)/m.
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Combining together the equations 2 and 3, I obtain

H = (v · ṙ − L) = ṙ2 −
(1

2 ṙ2 −
∫

C
−r̈′dr′

)
= 1

2 ṙ2 +
∫

C
−r̈′dr′

=
(1

2 ṙ2 − Gmp

r

)
+ Gm0

(
r0 · r

r3
0

− 1
|r − r0|

)
= HK + HP

(5)

where C is the trajectory taken from infinity to its position in the reference frame where
the planet mp is at the origin.

The Hamiltonian is made up of two parts:
- The keplerian part simplified by the Vis-viva equation with a defined as the semi-major
axes of the particles’s orbit:

HK = 1
2 ṙ2 − Gmp

r
= 1

2Gmp

(2
r

− 1
a

)
− Gmp

r
= −Gmp

2a
(6)

- The perturbative part simplified due to the hierarchy of the problem r/r0 ≪ 1:
By expanding 1/|r − r0| to the 2nd order, I get

1
|r − r0|

= 1
r0

(
1 − 2r · r0

r2
0

+ r2

r2
0

)− 1
2

= 1
r0

(
1 + r · r0

r2
0

− 1
2

r2

r2
0

+ 3
2

|r · r0|2

r4
0

+ O
(

r3

r3
0

)) (7)

as well as the perturbative part of the Hamiltonian

HP = Gm0

(
− 1

r0
+ 1

2
r2

r3
0

− 3
2

(r0 · r)2

r5
0

)
(8)

Notice that the term of first order is canceled out by Gm0(r0 ·r)/r3
0 in the perturbative

part. If 1/|r − r0| is only expanded to the first order, the perturbative Hamiltonian will
disappear completely. Since the constant −Gm0/r0 can be removed from the Hamiltonian
without changing the solutions, the three-degree-of-freedom Hamiltonian H(r; ṙ) can be
written as

H = −Gmp

2a
+ Gm0

(
1
2

r2

r3
0

− 3
2

(r0 · r)2

r5
0

)
(9)

with the Hamilton’s equations given by equations 4.

2.1.2 One-degree-of-freedom Hamiltonian

Since I only care about the orbit itself rather than the position of the satellite on its
orbit, I average the Hamiltonian over the mean anomaly to remove the information about
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the latter [2, 3]. From the Kepler’s equation M = E − e sin E, I get dM = (r/a)dE [2].
Therefore the averaged Hamiltonian becomes

H̄ = 1
T

∫ T

0
Hdt = 1

2π

∫ 2π

0
HdM = −Gmp

2a
+ Gm0

1
2

r2

r3
0

− 3
2

(r0 · r)2

r5
0

 (10)

The averaged quantities in the equation above are defined by

r2 = 1
T

∫ T

0
r2dt

(r0 · r)2 = 1
T

∫ T

0
(r0 · r)2dt

(11)

Assuming that (ı̂, ĵ, k̂) is the frame basis for the particle’s orbit and (Î, Ĵ , K̂) for the
orbit of the perturbator around the origin mp. Assuming also that both orbits are in the

same plane k̂//K̂, I get the expressions for the averaged quantities r2 and (r0 · r)2:

r2 = 1
2π

∫ 2π

0
r2 r

a
dE = 1

2π

∫ 2π

0
a2(1 − e cos E)3dE = a2

(3
2e2 + 1

)
(r0 · r)2 = tr0(r · tr)r0

= tr0 ·

 1
2π

∫ 2π

0

x2 xy 0
xy y2 0
0 0 0

 r

a
dE

 r0 = tr0 · a2

2

4e2 + 1 0 0
0 1 − e2 0
0 0 0

 r0

= tr0 · a2

2
[
(1 − e2)(I − k̂tk̂) + 5e2ı̂tı̂

]
· r0

= a2

2
(
(1 − e2)

[
r2

0 − (k̂ · r0)2
]

+ 5e2(ı̂ · r0)2
)

(12)

where I is an identity matrix of 3x3, and the transpose of a matrix M is denoted by tM.

I then transform the averaged Hamiltonian from Cartesian coordinates (r; ṙ) to elliptic
elements (a, e, i; M, ω, Ω), knowing the relations between them [2]

x = r cos ν = a(cos E − e)
y = r sin ν = a

√
1 − e2 sin E

r = a(1 − e cos E)
(13)

where
- M = nt = 2π

T
t: the mean anomaly of the particle, defined by the mean swept angle at

time t;
- ω: the argument of periapsis, which is the angle from the ascending node to its periapsis;
- Ω: the longitude of ascending node, which is the angle from a direction of reference to
the ascending node;
- ν the true anomaly and E the eccentric anomaly, as shown in the figure 3.
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Figure 3: The elliptic elements [4]

With the gravitational parameter µ = Gmp, the averaged Hamiltonian in elliptic
coordinates is

H̄ = −
(

µ

2a
− Gm0a

2

4r3
0

)
+ 3Gm0a

2e2

2r3
0

+ 3Gm0a
2

4r5
0

[(
1 − e2

) (
k̂ · r0

)2
− 5e2 (ı̂ · r0)2

]
(14)

However, the transformation from Cartesian coordinates to elliptic coordinates is not
canonical, which means that the form of Hamilton’s equations is not preserved. For a
system of N degrees of freedom, a transformation is said to be canonical if there exists a
NxN non degenerate matrix A and a function Ψ : R2N → R2N that is linear and takes
the form [5]:

Ψ :
(

p

q

)
7→
(

A 0
0 tA−1

)(
p

q

)
(15)

In order to rewrite the Hamiltonian with canonical variables, I refer to the Delaunay
variables as well as the Poincaré variables [3].

Delaunay variables (Λ, G, H; M, ω, Ω) with definitions

Λ = √
µa M

G = Λ
√

(1 − e2) ω

H = G cos i Ω
are proved to be canonical by Laskar, 2017 [6].

The canonicity of the Poincaré variables (Λ, D, Z; λ, −ϖ, −Ω) with

Λ = √
µa λ = M + ϖ

D = Λ − G = Λ(1 −
√

1 − e2) −ϖ = −ω − Ω
Z = G − H = G(1 − cos i) −Ω

are given in the Appendix A.
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With the coplanar assumption, k̂ · r0 = K̂ · r0 = 0, I obtain the relationsr0 = a0(cos λ0Î + sin λ0Ĵ)
ı̂ = cos ϖÎ + sin ϖĴ

⇒ ı̂ · r0 = a0 cos (λ0 − ϖ) (16)

One degree of freedom is directly removed since the inclination is assumed to be 0.
Assuming the orbit of the particle is circular, r0 = a0, I get

H(Λ, D; λ, −ϖ) = −
(

µ

2a
− Gm0a

2

4r3
0

)
+ 3Gm0

4r3
0

a2e2
(

2 − 5a2
0

r2
0

cos2 (λ0 − ϖ)
)

= −
(

µ2

2Λ2 − Gm0Λ4

4r3
0µ2

)

− 3Gm0

8a3
0

Λ4

µ2

(
1 −

(
1 − D

Λ

)2)
(5 cos (2 (λ0 − ϖ)) + 1)

(17)

where the semicolon symbol is used to separate the coordinates and their conjugated
momenta.

Noticing that Λ̇ = −∂H
∂λ

= 0, another degree of freedom (Λ; λ) is also removed and
the terms depending exclusively on Λ can be dropped out. Since a Hamiltonian is defined
to be autonomous if it doesn’t depend explicitly on time, the Hamiltonian 17 is indeed a
one-degree-of-freedom non-autonomous Hamiltonian H(D; −ϖ, t), depending on time via
the mean longitude λ0.

2.1.3 Autonomous one-parameter dimensionless Hamiltonian

To make the Hamiltonian autonomous, the time dependency implied in the mean
longitude of the perturbator λ0 should be removed, where λ0 is defined by the product

of its mean motion n0 =
√

G(m0 + mp)/a3
0 and time, λ0 = n0t. It can be done by going

into the extended phase space, through adding another degree of freedom (Λ0; λ0) without
changing the solutions:

H(D, Λ0; −ϖ, λ0) = −3Gm0

8a3
0

Λ4

µ2

(
1 −

(
1 − D

Λ

)2)
(5 cos (2 (λ0 − ϖ)) + 1) + n0Λ0 (18)

To remove again this fake degree of freedom that I added artificially, I will look for
a canonical transformation that makes one of the conjugate variables become (λ0 − ϖ).
Assuming that the transformation takes the form (D, Λ0; −ϖ, λ0) → (Σ1, Σ2; σ, σ2), the
matrix tA−1 in the canonicity criterion 15 isσ = λ0 − ϖ

σ2 = λ0
⇒ tA−1 =

(
1 1
0 1

)
(19)

The matrix A can be computed from tA−1,

A =
(

1 0
−1 0

)
⇒

Σ1 = D

Σ2 = Λ0 − D
(20)
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and the Hamiltonian becomes

H (D, Σ2; σ, λ0) = H (D, Λ0 − D; λ0 − ϖ, λ0)

= n0(Σ2 + D) − 3Gm0

8a3
0

Λ4

µ2

(
1 −

(
1 − D

Λ

)2)
(5 cos(2σ) + 1)

(21)

It’s no longer explicitly dependent of λ0, then Σ2 is actually a constant because of
Σ̇2 = − ∂H

∂λ0
= 0. After rearranging the terms, I finally get the one-degree-of-freedom

autonomous Hamiltonian

H(D; σ) = D

[
n0 − 3n2

0
8n

(
2 − D

Λ

)
(5 cos(2σ) + 1)

]

=
(

n0 − 3n2
0

4n

)
D + 3n2

0
n

D2
√

µa
− 15n2

0
4n

D cos 2σ + O
(
D2 cos 2σ

)
≃ αD + β

D2
√

µa
− γD cos 2σ

(22)

with



α = n0 − 3n2
0

4n

β = 3n2
0

n

γ = 15n2
0

4n

The tidal bulge on the planet can be included in the model by adding a potential term
to the Hamiltonian [1]

Vbulge = −
GmpR2

p

2r5 J2
[
r2 − 3(k̂ · r)2

]
(23)

where J2 = 1
2

Ω2
pR3

p

GMp

is the oblateness of the planet.

I compute the averaged potential before adding this term into the averaged Hamilto-
nian, assuming that the orbit of the particle is in the xy plane (k̂ · r = 0)

Vbulge = 1
2π

∫ 2π

0
VbulgedM = −

GmpJ2R
2
p

4π

∫ 2π

0

1
r3 dM

= −
GmpJ2R

2
p

2

(
1

a3(1 − e2) 3
2

)

= −
nΛJ2R

2
p

2a2(1 − e2) 3
2

(24)

where Gmp/a = µ/a =
√

µ/a3√µa = nΛ.
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With (1−e2)1/2 = 1−D/Λ, I expand the last term for small eccentricities: (1−x2)−3 =
1 + 3x + 6x2 + O(x3) and get

Vbulge = −
nΛJ2R

2
p

2a2

(
1 − D

Λ

)−3

= −
nΛJ2R

2
p

2a2

(
1 + 3D

Λ + 6D2

Λ2 + O(D3)
)

= −
nΛJ2R

2
p

2a2 −
3nJ2R

2
p

2a2 D −
3nJ2R

2
p

a2
D2

Λ + O(D3)

(25)

where the first term is a constant that can be simply dropped out.

The Hamiltonian with the tidal bulge included in the model is thus

H(D; σ) = D

[
n0 − 3n2

0
8n

(
2 − D

Λ

)
(5 cos(2σ) + 1)

]
−

nΛJ2R
2
p

2a2(1 − e2) 3
2

=
(

n0 − 3n2
0

4n
− 3

2nJ2
R2

p

a2

)
D +

(
3n2

0
n

− 3nJ2
R2

p

a2

)
D2

√
µa

−
(

15n2
0

4n

)
D cos 2σ

+ O
(
D2 cos 2σ

)
+ O(D3)

≃ αD + β
D2

√
µa

− γD cos 2σ

which takes the same form as the Hamiltonian 22, but with J2 included in the definitions
of α and β 

α = n0 − 3n2
0

4n
− 3

2nJ2
R2

p

a2

β = 3n2
0

n
− 3nJ2

R2
p

a2

γ = 15n2
0

4n

(26)

A q-order resonance takes the general form: Hq = αΣ+βΣ2 +γΣ q
2 cos qσ. By ignoring

higher orders, the Hamiltonian of the hierarchical restricted 3-body problem H(D; σ) is
indeed a 2nd order resonance, with the resonance angle σ = λ0 − ϖ.

Notice that β = 3n2
0

n
− 3nJ2

R2
p

a2

{
< 0 for small a
> 0 for large a

, as the tidal bulge term becomes

negligible at large semi-major axes. By doing another transformation, I get
H ′ = H

√
µa

Σ = D
√

µa

⇒ H ′(Σ; σ) = αΣ ∓ |β|Σ2 − γΣ cos 2σ

− for small a

+ for large a
(27)

This transformation is not canonical. But the variables can still be treated as canonical
because the equations of motion preserve the Hamiltonian structure:Σ̇ = Ḋ√

µa
= − 1√

µa
∂H
∂σ

= −∂H′

∂σ

σ̇ = ∂H
∂D

= √
µa∂H′

∂Σ = ∂H′

∂Σ

(28)
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Both Σ and σ become dimensionless and H ′ has a dimension of frequency. In order
to obtain an one-parameter dimensionless Hamiltonian, I perform another non-canonical
transformation, which can be considered canonical for the same reason above:

H ′′ = H ′

ω

Φ = Σ
k

ϕ = σ

⇒ H ′′(Φ; ϕ) = αk

ω
Φ ∓ |β|k2

ω
Φ2 − γk

ω
Φ cos 2ϕ

− for small a

+ for large a
(29)

By choosing k, ω such that the Hamiltonian takes the form H(Φ; ϕ) = δΦ ∓ Φ2 −
Φ cos 2ϕ, I get the expression for δ:



αk

ω
= δ

|β|k2

ω
= 1

γk

ω
= 1

⇒



k = γ

|β|

ω = γk = γ2

|β|
δ = αk

ω
= α

γ

(30)

It’s surprising that δ is independent of |β|. It actually depends on a, n, J2:

δ(a, n, J2) = δ(a) = 1
5

(
4
3

n

n0
− 2J2

n2

n2
0

R2
p

a2 − 1
)

(31)

with



n(a) =
√

µ

a3

J2(a) = 1
2

Ω2
p(a)R3

p

Gmp

Ωp(a) =
L0 − m

√
µa(1 − e2)

IpmpR2
p

where Ωp is the rotational velocity of the planet, L0 is the total angular momentum in
the planet-satellite system, Ip is the moment of inertia of the planet.

Figure 4: Schema of the tidal interaction in a planet-satellite system (Ωp > n)

The tidal effect leads to the variation of the semi-major axes in a prograde orbit where
the satellite orbits the planet in the same direction as the latter rotates on itself, as shown
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in the figure 4. If the rotational velocity of the planet Ωp exceeds the orbital velocity of
the satellite n, the tidal bulges are misaligned with respect to the planet-satellite direction
r by an angle θ = (Ωp − n)∆t, where ∆t is the constant time lag measuring the tidal
dissipation [7]. The torque exerted on the bulges slows down the rotation of the planet,
and the orbit of the satellite expands as a result of the conservation of total angular mo-
mentum. If Ωp < n, the planet rotates faster and the orbit of the satellite migrates inward.

It can be noticed that the parameter δ, which determines the topology of the phase
space, is varying only with the semi-major axes. As the satellite gets away from the planet
due to the tidal effect, certain ranges of δ allows the occurrence of the evection resonance,
as will be explained in the next section. From this property, the history of δ is easily
traced in the section 2.2.2.

2.2 Analysis of the phase space H(Φ; ϕ)
2.2.1 Bifurcations of topology of the phase space

The one-degree-of-freedom autonomous Hamiltonian of the hierarchical restricted
3-body problem has been simplified to be

H(Φ; ϕ) = δΦ ∓ Φ2 − Φ cos 2ϕ

− for small a

+ for large a
(32)

where

Φ = |β|
γ

(
1 −

√
1 − e2

)
≈ |β|

2γ
for small eccentricities

ϕ = λ0 − ϖ, which is the resonance angle

I recall that λ0 = n0t is the mean longitude of the perturbator, and ϖ = ω + Ω is the
longitude of periapsis of the particle.

Let

{
X =

√
2Φ cos ϕ

Y =
√

2Φ sin ϕ
, H(Φ; ϕ) can be written as

H(X, Y ) = δ

2
(
X2 + Y 2

)
∓ 1

4
(
X2 + Y 2

)2
− 1

2
(
X2 − Y 2

)
(33)

The transformation (Φ, ϕ) → (X, Y ) is proven to be canonical in the Appendix B.
By equating the right-hand-side of the equations of motion to 0 and solving{

Ẋ = −∂H
∂Y

= 0
Ẏ = ∂H

∂X
= 0 (34)

the number of solutions corresponds to the number of fixed points in the phase space.
While the number of fixed points changes, the bifurcations occur and the topology of the
phase space changes.
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1. At small semi-major axes, the equations 34 are

{
X (X2 + Y 2 − δ + 1) = 0
Y (X2 + Y 2 − δ − 1) = 0 , and

the solutions are given in the table 1 below.

Small a δ < −1 −1 < δ < 1 δ > 1
Number of solutions 1 3 5

Fixed points (0, 0) (0, 0), (0, ±
√

δ + 1) (0, 0), (0, ±
√

δ + 1), (±
√

δ − 1, 0)

Table 1: Fixed points at small semi-major axis

2. At large semi-major axis, the equations 34 are

{
X (X2 + Y 2 + δ − 1) = 0
Y (X2 + Y 2 + δ + 1) = 0 , and

the solutions are given in the table 2 below.

Large a δ < −1 −1 < δ < 1 δ > 1
Number of solutions 5 3 1

Fixed points (0, 0), (±
√

1 − δ, 0), (0, ±
√

−δ − 1) (0, 0), (±
√

1 − δ, 0) (0, 0)

Table 2: Fixed points at large semi-major axis

Taking the evection resonance at small semi-major axes in the Sun-Earth-Moon sys-
tem as an example, the bifurcations are shown in the figure 5. There are mainly three
configurations of the topology of the phase space:

Figure 5: Phase space H(Φ, ϕ) = H(X, Y ) of the Sun-Earth-Moon system

• δ < −1 (a = 5.42R⊕ in the example): There is only one fixed point in the center
where e = 0, which means that the satellite has a very stable circular orbit around
the fixed point.

• −1 < δ < 1 (a = 5.45R⊕ in the example): There are three fixed points, with one in
the center and the other two respectively above and below. There’s no more stable
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orbits in the center since the fixed point (0, 0) has become an unstable one. The
satellite is captured by an orbit around one of the two stable fixed points at large
eccentricities, and the resonance angle ϕ will oscillate around π/2 (for the fixed
point above) or 3π/2 (for the one below) instead of circulating from 0 to 2π. It
indicates that (λ0 − ϖ) is a constant and the satellite’s orbit is precessing as fast as
the variation of the mean longitude of the star. This bifurcation from 1 to 3 fixed
points marks that the system has entered into the evection resonance.

• δ > 1 (a = 5.47R⊕ in the example): There are in total five fixed points, with two
more on the left and right compared to the previous case. A new stable zone is
allowed in the center, however the satellite won’t get back immediately to a stable
orbit. It stays around one of the fixed points above and below, and will eventually
be recaptured by the central zone as the zone enlarges while the semi-major axes
increases. Thus, the evection resonance won’t end as the second bifurcation (from
3 to 5 fixed points) occurs. As the resonant libration amplitude increases, the
resonance angle circulates again when the satellite gets back to a stable circular
orbit in the center [8].

Two evection resonances are expected from solving the equations of motion, separately
at small and large semi-major axes. However, it is still necessary to study precisely
whether the parameter δ will actually reach twice the values indicating the beginning of
the evection resonance, as what I’ll do for the next section.

2.2.2 History of the parameter δ and the two evection resonances

Figure 6: δ(a) history of the Sun-Earth-Moon system

From the equation 31 I know that the only parameter which appears in the simplified
Hamiltonian just has one variable: the semi-major axes. It would be very helpful to trace
the variation of δ as a function of a to find out when and how many times a system is
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going to experience the evection resonance. Following the same equation, the evolution
of δ(a) is plotted in the figure 6.

The tidal bulge on the planet dominates for very close-in orbits and is negligible only
for faraway orbits. The figure 6 confirms that the system will enter into the first evection
resonance by increasing from below -1 to over 1. Then the satellite is recaptured by a
stable orbit at some time when δ > 1. As the satellite spirals away, δ goes below 1, the
system enters the second evection resonance and stays there until it completely gets out
of the system, since it requires a negative mean motion n to let δ reach −1 if J2 is ignored.

Therefore, for a satellite which is initially at a very close-in orbit and which gradually
moves away by gaining angular momentum from the planet, it can be summarized as in
the figure 7 that:

• The first evection resonance takes place when δ rises up to -1 at small semi-major
axes. Then it quickly evolves to 1 and stable circular orbits are allowed again. This
resonance ends at some time during δ > 1, as the satellite is recaptured by the
enlarging stable zone in the center of the phase space.

• The second evection resonance occurs when δ drops down to 1 at large semi-major
axes. Since the oblateness of the planet J2 can be ignored for faraway orbits, this
condition yields

δ = 1
5

(4
3

n

n0
− 1

)
= 1 ⇒ n

n0
= 9

2 (35)

By replacing the mean motions of the particle and of the perturbator with the

expressions derived from the Kepler’s Third Law: n =
√

Gmp/a3, n0 =
√

Gm0/a3
0,

the position of the second evection resonance is

a2nd ER =
( 4mp

81m0

)1/3
a0 (36)

I notice that the mass ratio term can be replaced by introducing the Hill radius

RHill = a0 (mp/3m0)
1
3 , which is the boundary at which the planet’s gravitational

pull on the particle is equal to that of the perturbator.

a2nd ER =
(

4mp

81m0

3m0

mp

) 1
3

RHill =
( 4

27

) 1
3

RHill ≈ 0.529RHill (37)

The parameter δ then remains between -1 and 1 for the rest of the life of the 3-body
system, and never reaches again -1, which means that no stable zone is allowed
anymore in the center of the phase space. The profile of the phase space is rotated
by π/2 compared to the first evection resonance, thus the resonance angle will
oscillate around 0 or π.
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Figure 7: The evolution of topology of the phase space in the hierarchical restricted 3BP

3 Numerical simulations

NcorpiON is a sophisticated software designed for N-body problem simulations, es-
pecially for planetary systems [1]. Advanced algorithms are implemented to handle the
mutual gravity among multiple objects as well as their tidal interactions. The advantage
compared to the previous N-body simulation integrators is that NcorpiON takes into ac-
count the fragmentation as an important outcome of the system. By simply adjusting the
parameters of the particles, all the information about the orbits during the simulation as
well as a 3D real-time visualization are available.

By using NcorpiON, I simulated the Sun-Earth-Moon system soon after the moon’s
formation and a selected exoplanetary system near the Hill sphere. It is because the
former would never experience the second evection resonance due to the lack of angular
momentum in the Earth-Moon 2-body system, while the latter cannot have passed through
the first evection resonance which would have occurred inside the Roche radius, as will
be explained in detail in the sections 3.1.1 and 3.2.

3.1 Simulation for the Sun-Earth-Moon system

From the analytical part, theoretical values of the critical semi-major axes for the
evection resonance can be obtained by looking for the bifurcations of topology in the
phase space.
- a1 ≈ 5.43R⊕ where the first evection resonance occurs;
- a2 ≈ 124.3R⊕ where the second evection resonance occurs.
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3.1.1 Searching for the second evection resonance in the future

Figure 8: Searching for the second evection resonance of the Sun-Earth-Moon system

The second evection resonance would take place at a2 = 124.3R⊕ theoretically, however
it never shows up in the simulation starting from the current orbit acurrent = 60.3R⊕, even
if NcorpiON is run for longer periods of time. The reason is that the Earth-Moon system
doesn’t have enough angular momentum to allow the moon to reach a2. Currently the
Earth is rotating slightly quicker than the moon’s orbital velocity, and is actually spinning
down due to the torque exerted on the tidal bulge. The moon is thus migrating outward
and will reach 86R⊕ at maximum before being tidally locked to the Earth, which marks
the end of the dynamical evolution of the system. The moon is simply not able to get far
enough to get into the second evection resonance.

3.1.2 Searching for the first evection resonance in the past

Assuming the moon was formed from a giant impact and stayed in an orbit at a ≈ 4R⊕
at the beginning, it would have entered into the first evection resonance very rapidly.
The variation of the resonance angle ϕ, the eccentricity of the moon’s orbit and the total
angular momentum in the Earth-Moon system as a function of the semi-major axes are
shown in the figures 9, 10 below.

The first evection resonance occurs exactly where I expected it to be. The eccentricity
of the orbit has increased rather fast and even reached 0.6: It’s clear that the moon has
been captured during the simulation by the fixed point on the bottom in the figure 5, since
the resonance angle is oscillating around 3π/2 and that the orbits far from the center of
the phase space are highly eccentric, as explained in the section 2.2.1.
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Figure 9: Resonance angle ϕ and eccentricity of moon’s orbit during the first resonance

Figure 10: Angular moment of the Earth-Moon system during the first resonance

Around 5% of the total angular momentum in the Earth-Moon system that has been
lost is indeed transferred to the Sun-Earth system, indicating a chain of angular mo-
mentum transfer during the resonance, from the Earth’s spin to the moon’s orbit and
eventually to the Earth’s orbit [9, 10, 11]. A slightly backward evolution at the end of
the resonance has also been noticed, because the satellite is moving much faster at the
periapsis in a highly eccentric orbit due to the Kepler’s second law. Its orbital velocity can
be even faster than the rotational velocity of the planet, letting the tidal effect transfer
angular momentum from the satellite’s orbit back to the spin of the planet and causing
the orbit to shrink.
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3.2 Simulation for the exoplanetary system of TOI-6303 b

3.2.1 Selection of the planet

Since there’s no method up to now to detect exomoons, no real exoplanetary system is
available to study the problem of interest. However, it could be interesting to pick up an
exoplanet that would allow me to see the second evection resonance by simulation. The
parameters of exoplanets should be carefully checked so that an exomoon is possible and
probable to exist at least for a relatively long period of time. More specifically, the planet
should have a large safe zone for the satellite to live in, defined as the region between the
Roche radius and the Hill radius.

• The Roche radius RRoche = 2.44Rp (ρp/ρ)1/3 is the minimal semi-major axes of the
satellite’s orbit so that it won’t be torn apart by the tidal forces of the planet [12].

• The Hill radius RHill = a0 (mp/3m0)1/3 is defined as the maximal semi-major axes
within which the gravity of the planet dominates.

I set the selection criteria to be RHill/RRoche ≈ 10, and by searching among the detected
exoplanets, TOI-6303 b seems to be a good choice [13]. Basic information regarding this
planet and its star are given below.

m0 R0 mp Rp a Orbital period of the planet
0.64M⊙ 0.61R⊙ 7.84MJ 1.03RJ 0.076 AU 9.49 days

Table 3: Information on TOI-6303 b system

When artificially setting up a satellite, several conditions have to be met.

• The planet should not rotate too fast to disintegrate. Its rotational velocity is
required to satisfy Ωp ≪

√
GMp/R3

p.

• The planet should not rotate too slowly to avoid getting into the same situation as
the Sun-Earth-Moon system: The total angular momentum is not enough to let the
satellite evolve until the second evection resonance.

• The satellite has an appropriate mass and density: m ≈ Mp/1000, ρ = ρp.

• The rotational velocity of the planet has to be higher than the orbital velocity of
the satellite (Ωp > n) so that the angular momentum is transferred in the correct
direction and that the satellite actually moves outward.

The set-up values of the artificial satellite as well as the Roche radius and the Hill
radius are listed in the table 4.
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m 25M⊕
R 1.16R⊕

Rotational period of the planet 11.1 hours
Orbital period of the satellite 25.1 hours

RRoche 2.44Rp

RHill 24.3Rp

Maximal semi-major axes 1288Rp

Table 4: Set-up values on the TOI-6303 b system

3.2.2 Searching for second evection resonance

By analyzing the phase space of the TOI-6303 b system, the two evection resonances
should ideally occur at a1 = 1.153Rp and a2 = 12.785Rp. Since a1 < RRoche, the satellite
wouldn’t have lived in the orbit where the system enters the first evection resonance.
I launched the simulation with the satellite which is initially at 7.5Rp and the second
evection resonance appears in the figures below.

Figure 11: The second evection resonance in the TOI-6303 b system

The resonance angle oscillates around π, since the two fixed points other than (0, 0)
are on the x-axis for the second evection resonance. It could also be noticed that the
figure 11 doesn’t look exactly the same as the figure 9 for the Sun-Earth-Moon system,
and the system enters the resonance at around a = 10Rp, well before the prediction. It is
because the simulation becomes less accurate for orbits near the Hill sphere, i.e. for the
second resonance compared to the first one, due to the assumptions that I made. The
chaotic nature of orbits near the Hill radius introduces great limitations to the precision
of the simulation: higher-order terms in the equation 7 cannot be ignored anymore, the
gravitational influence of the star is no longer small enough for us to apply the perturbation
theory.
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4 Conclusion

In this project, I firstly derived the mathematical description of the evection resonance,
which is by definition a second-order resonance between the mean longitude of the star
and the longitude of periapsis of the satellite. The Hamiltonian is simplified to be

H(Φ; ϕ) = δΦ ∓ Φ2 − Φ cos 2ϕ

− for small a

+ for large a

A hierarchical restricted 3-body problem where the satellite migrates outward due to
the tidal interaction will undergo twice the evection resonance respectively in a close-in
and faraway orbit, during which the eccentricity of the satellite’s orbit is greatly excited.
The system gets out of the resonance in between the two, but would stay in the second
one until the end of the system. Thanks to NcorpiON software and the Bonsai cluster of
the University, I’ve also gained experience in simulating 3-body problems to confirm the
theoretical results. In fact, some of the systems, such as ours, don’t even have the oppor-
tunity to go through the second evection resonance because of the lack of the available
angular momentum.

The evection resonance helps also to understand the orbital evolution of the satellite,
as well as other phenomena appearing in the history of the planet-satellite system, for
instance the loss of total angular momentum of the planet-satellite two-body system. The
same analysis could be done for other satellites in the solar systems as well to check
whether one or both resonances are possible to happen, and if we detect exomoons one
day, the evolution of their orbits could be better predicted by incorporating the evection
resonance theory.
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5 Appendix

5.1 Appendix A: Canonicity of the Poincaré variables

For the transformation from the Delaunay variables (Λ, G, H; M, ω, Ω) to the Poincaré
variables (Λ, D, Z; λ, −ϖ, −Ω), the non-degenerate matrix tA−1 in the canonicity criterion
15 reads 

λ = M + ω + Ω
−ϖ = ω − Ω
−Ω = −Ω

⇒ tA−1 =

1 1 1
0 −1 −1
0 0 −1

 (38)

The matrix A can be computed from tA−1

A =

1 0 0
1 −1 0
0 1 −1


I notice that the conjugated momenta of the Poincaré variables are indeed equal to

the product of A and the conjugated momenta of the Delaunay variables

A ·

Λ
G
H

 =

 Λ
Λ − G
G − H

 =

Λ
D
Z

 (39)

and the canonicity of the Poincaré variables is thus assured by meeting the condition 15.

5.2 Appendix B: Canonicity of the transformation (Φ, ϕ) → (X, Y )
A transformation is canonical if and only if its Jacobian is symplectic [5]. From the

given transformation:
X =

√
2Φ cos ϕ, Y =

√
2Φ sin ϕ

The Jacobian matrix of the transformation reads

J =


cos ϕ√

2Φ
−

√
2Φ sin ϕ

sin ϕ√
2Φ

√
2Φ cos ϕ

 (40)

with the determinant

det(J) =
(

cos ϕ√
2Φ

)
(
√

2Φ cos ϕ) −
(

sin ϕ√
2Φ

)
(−

√
2Φ sin ϕ) = cos2 ϕ + sin2 ϕ = 1

The Poisson brackets in the (Φ, ϕ) coordinates are defined as:

{f, g} = ∂f

∂Φ
∂g

∂ϕ
− ∂f

∂ϕ

∂g

∂Φ
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Then the Poisson brackets for (X, Y ) in terms of (Φ, ϕ):

{X, Y } = ∂X

∂Φ
∂Y

∂ϕ
− ∂X

∂ϕ

∂Y

∂Φ

=
(

cos ϕ√
2Φ

)
(
√

2Φ cos ϕ) − (−
√

2Φ sin ϕ)
(

sin ϕ√
2Φ

)
= cos2 ϕ + sin2 ϕ = 1

{Y, X} = {X, Y }

{X, X} = ∂X

∂Φ
∂X

∂ϕ
− ∂X

∂ϕ

∂X

∂Φ = 0

{Y, Y } = ∂Y

∂Φ
∂Y

∂ϕ
− ∂Y

∂ϕ

∂Y

∂Φ = 0

(41)

verifies the invariance of Poisson brackets {X, Y } = {Y, X} = 1, {X, X} = {Y, Y } = 0,
which leads to the symplecticity of the Jacobian matrix. Therefore, the transformation
(Φ, ϕ) → (X, Y ) is proved to be canonical.
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